Matroidal Structure of Rough Sets from the Viewpoint of Graph Theory
نویسندگان
چکیده
Constructing structures with other mathematical theories is an important research field of rough sets. As one mathematical theory on sets, matroids possess a sophisticated structure. This paper builds a bridge between rough sets and matroids and establishes the matroidal structure of rough sets. In order to understand intuitively the relationships between these two theories, we study this problem from the viewpoint of graph theory. Therefore, any partition of the universe can be represented by a family of complete graphs or cycles. Then two different kinds of matroids are constructed and some matroidal characteristics of them are discussed, respectively. The lower and the upper approximations are formulated with these matroidal characteristics. Some new properties, which have not been found in rough sets, are obtained. Furthermore, by defining the concept of lower approximation number, the rank function of some subset of the universe and the approximations of the subset are connected. Finally, the relationships between the two types of matroids are discussed, and the result shows that they are just dual matroids.
منابع مشابه
Transversal and Function Matroidal Structures of Covering-Based Rough Sets
In many real world applications, information blocks form a covering of a universe. Covering-based rough set theory has been proposed to deal with this type of information. It is more general and complex than classical rough set theory, hence there is much need to develop sophisticated structures to characterize covering-based rough sets. Matroids are important tools for describing graphs and li...
متن کاملRough sets and matroidal contraction
Rough sets are efficient for data pre-processing in data mining. As a generalization of the linear independence in vector spaces, matroids provide wellestablished platforms for greedy algorithms. In this paper, we apply rough sets to matroids and study the contraction of the dual of the corresponding matroid. First, for an equivalence relation on a universe, a matroidal structure of the rough s...
متن کاملMatrix approach to rough sets through vector matroids over a field
Rough sets were proposed to deal with the vagueness and incompleteness of knowledge in information systems. There are many optimization issues in this field such as attribute reduction. Matroids generalized from matrices are widely used in optimization. Therefore, it is necessary to connect matroids with rough sets. In this paper, we take field into consideration and introduce matrix to study r...
متن کاملA matroidal approach to rough set theory
Rough set theory has been successfully applied to vague and uncertain data due to its approximation ability. Matroid is a sophisticated mathematical structure to provide a unifying abstract treatment for graph theory, linear algebra, and combinatorial optimization. In this paper, we redefine rough approximation operators throughmatroidal approaches and build a matroidal structure of rough set t...
متن کاملMatroidal Structure of Rough Sets Based on Serial and Transitive Relations
The theory of rough sets is concerned with the lower and upper approximations of objects through a binary relation on a universe. It has been applied to machine learning, knowledge discovery, and data mining. The theory of matroids is a generalization of linear independence in vector spaces. It has been used in combinatorial optimization and algorithm design. In order to take advantages of both...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012